CARDENOLIDE GLYCOSIDES FROM

Streptocaulon tomentosum WIGHT & ARNOTT (မြင်းစဂုံနီ) (ASCLEPIADACEAE) in MYANMAR

Myint Myint Khine¹, Norbert Arnold², Katrin Franke², Ludger A. Wessjohann²

Abstract

This paper describes the isolation and comparative studies on NMR spectra of cardenolide glycosides from Streptocaulon tomentosum Wight & Arnott (Asclepiadaceae). Nine cardenolides were isolated from the roots of Streptocaulon tomentosum. by column chromatography and identified by NMR spectroscopy. They are 17α -H-periplogenin, 17α -H-periplogenin- β -D digitoxose, 17α -H-periplogenin- β -D cymarose, 17α -H-periplogenin- β -glucosyl-(1-4)-2-O-acetyldigitalose, 17β -H-periplogenin, 17β -H-periplogenin- β -D digitoxose, 17β -H-periplogenin- β -D cymarose, 17α -H-digitoxigenin, and 17α -H-digitoxigenin- β -D-digitoxoside. Comparative studies on NMR spectra of cardenolide glycosides were carried out. Six cardenolides isolated from Streptocaulon tomentosum were tested for their antiproliferative activity in vitro against MCF-7 (human breast cancer cell line) and L 929 (mouse fibroblast cell line). Among these six cardenolides, 17α -H-periplogenin-3-O- β -D-digitoxoside and 17α -H-periplogenin-3-O- β -Dcymaroside exhibit significant antiproliferative activity (IC₅₀ values, $< 1\mu$ M) against MCF-7. Four cardenolides were examined for their cellular viability in the tumor cell and U 937 (human leukemic cell line) at concentrations 100 μ M, 10 μ M, and 1 μ M. All these four cardenolides show the induction of apoptosis at 100 μ M and 10 μ M in both cell lines.

Keywords: *Streptocaulon tomentosum*, Asclepiadaceae, cardenolides, antiproliferative activity, cellular viability

Introduction

The genus *Streptocaulon* belongs to the family Asclepiadaceae and includes five species. Two species, S. tomentosum and S. griffithii J. D. Hooker grow in Myanmar. The roots of Streptocaulon tomentosum are used in Myanmar in traditional medicine for the treatment of anticancer, dysentery and stomachache, and the leaves are used externally for the treatment of snake poisoning and abscesses. In previous studies, nobody reported about the isolation of bioactive substances from S.tomentosum. However the isolation of cardenolides from the root of S. juventas (Lour.) Merr. and antiproliferative activity of cardenolides isolated from S. juventas have been reported (Ueda et al., 2003a; 2003b). Cardenolides occur in several plant families including the Asclepiadaceae, the Apocynaceae, the Scrophulariaceae, the Celastraceae, and the Tiliaceae. The cardiac glycosides, digitoxin and digoxin, have been used for the treatment of heart failure for hundreds of years. In 2005, digitoxin, digoxin, gitoxin and their corresponding aglycones were evaluated for growth inhibition activity in three human cancer cell lines TK-10 (renal), MCF-7 (breast), and UACC-62 (melanoma) at concentrations commonly found in cardiac patients. Digitoxin (IC₅₀ 3.2-33.5 nM) and digoxin (IC₅₀14.6-29.5 nM) showed the highest level of growth inhibition in the three cell lines investigated (Lázaro et al., 2005). The above-mentioned reports suggest that digitalis may have an anticancer utilization.

¹ Dr, Professor, Department of Chemistry, University of Yangon

² Dr, Professor, Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry

^{*} Best Paper Award Winning Paper in Chemistry (2019)

Materials and Methods

Sample Collection and Identification of Plant Samples

Streptocaulon tomentosum Wight and Arn. (Asclepiadaceae), roots collected in May 2002 from Mawlamyine Township, Myanmar by Dr Daw Hla Ngwe. The species was identified by Prof. Dr Aung Aung Min, Department of Botany, University of Yangon.

A voucher specimen of the clamberer (No. Y.H.V. 1004) is deposited in University of Yangon.

Spectral Studies

1D NMR spectra (¹H, ¹³C) were recorded on a Varian Mercury 300 at 300.94 MHz for 1H, and at 100.57 MHz for ¹³C NMR. 2DNMR spectra (HSQC, HMBC, COSY, ROESY) were recorded on a Varian Inova 500 at 499.81 MHz for ¹H. Chemical shifts in ppm were referenced to internal TMS ($\delta = 0$) for 1H and C₅D₅N (δ 149.81, 135.48, 123.50 ppm) for ¹³C, respectively.

Isolation and Identification of Cardenolides from the Roots of Streptocaulon tomentosum

Dried powdered root of *S. tomentosum* (1000 g) was extracted with 80% aqueous EtOH. After evaporation of the solvent, the resulting crude extract was successively partitioned between organic solvents (*n*-hexane, ethylacetate, *n*-butanol) and water. The ethyl acetate crude extract (12 g) was chromatographically separated on silica gel 60 (70-230 mesh, Merck) with *n*-hexane, ethyl acetate, and methanol (increasing polarity) to afford 23 fractions. Fraction 12 and 15 were rechromatographed on silica gel 60 (230-400 mesh, Merck) using CHCl₃:MeOH (9.5:0.5, v/v) and silica RP18 using MeOH:H₂O (9:1, v/v) to give compound **1**. Compound **2** and **3** were obtained from fraction 14 (Kawaguchi *et al.*, 1988). The subfractions 14 and 15 of the ethyl acetate extract provided, after silica gel and RP-18 column chromatographed on sephadex LH-20 eluting with MeOH to afford compound **4**. Fractions 5 to 11 were repurified on silica gel 60 (230-400 mesh, Merck) using CHCl₃:MeOH (9.5:0.5, v/v) to give compounds **8** and **9**.

The *n*-butanol fraction (18 g) was separated on silicagel 60 (230-400 mesh, Merck) using CHCl₃:MeOH (9.5:0.5, v/v) to give 28 subfractions. The subfraction 7 was purified by silica RP-18 using MeOH:H₂O (8:2, v/v) to give compound **7**.

Antiproliferative Activity of Cardenolides

Acid phosphatase assay: Cells were grown in 96-well plates at densities upto 100,000 cells per well. The culture medium was removed from these cells with a multichannel pipettor (Wheaton), and each well was washed once with 200 μ l phosphate-buffered saline (PBS, pH 7.2). For nonadherent cells, to remove solution from plates, the 96-well plates were centrifuges at 2500 rpm for 10 min (Beckman GS-15R centrifuge). To each well, 100 μ l of buffer containing 0.1 M sodium acetate (pH 5.0), 0.1 % Triton X-100, and 5 mM *p*-nitrophenyl phosphate was added. The plates were placed in a 37 °C incubator for 2 h. The reaction was stopped with the addition of 10 μ l of 1 N NaOH, and colour development was assayed at 405 nm using a microplate reader (THERMOmax plate reader, Molecular Devices, Inc.). The nonenzymatic

hydrolysis of the pNPP substrate was determined for each assay by including wells that did not contain cells. This background value was typically 0.07-0.2 absorbance units.

Cellular Viability of Cardenolides

Cell culture and stimulation

Human U 937 myeloid leukemia cells were grown in RPMI 1640 medium supplemented with 10% heat-inactivated fetal calf serum (FCS), 100 µg/ml penicillin, 100 µg/ml streptomycin, 2 mM L-glutamine (Gibco, Grand Island, N.V., USA). Human TUR myeloid leukemic cells (ATCC #2367) were grown in a similar medium supplemented with 400 µg/ml G418 (Sigma Chemical Co., St. Louis, MO/USA). The maintenance of the TUR cells in the presence of G418 was terminated one week before the appropriate experiments. U 937 and TUR cells were treated with the appropriate substances at a density of 2 x 10^5 cells/ml for up to 72h, respectively. The cell number and viability of each culture was assessed by a Vi-Cell cell viability analyzer (Beckman Coulter) using an assay kit and the quantification software Vi-Cell version 1.01 according to the manufacturers protocol (Beckman Coulter).

Cell cycle analysis

Following an appropriate incubation the cells were fixed in 70% (v/v) ice-cold ethanol at 4 °C for 24 h. The fixed cells were stained with CyStain DNA 2 step kit (Partec GmbH, Münster, Germany) and filtered through a 50 μ m filter. The samples were then analyzed in a Galaxy flow cytometer (Dako-Cytomation GmbH, Hamburg, Germany) using FloMax analysis software (Partec) and the MultiCycle cell cycle software (Phoenix Flow Systems Inc., San Diego, CA.

Results and Discussion

Structure Elucidation of Cardenolides

(a) 17α-H-Periplogenin (1), 17α-H-periplogenin-β-D digitoxose (2), 17α-H-periplogenin-β-D cymarose (3)

Fraction 12 of the ethyl acetate extract gave compound **1**. Compound **2** and **3** were obtained from fraction 14 (Kawaguchi *et al.*, 1988). The ¹H NMR (C₅D₅N) data of compound **1** (HR-ESI-MS: 413.23098 [M+Na]⁺, calc. for C₂₃H₃₄O₅Na 413.22984) agreed with the characteristic peaks of cardenolides. The signal of H-21 a and b in the butenolide ring showed at δ 5.36 and 5.08 ppm (*dd*, *J* 18.1/1.4 Hz).

The H-22 was observed as a singlet at δ 6.17 ppm. The H-3 signal appeared as a broad singlet at δ 4.46 ppm. The H-17 signal appeared at δ 2.84 as *dd* (*J* 9/3 Hz) and the H₃-18 and H₃-19 signals at 0.88 and 0.94 as singlet. According to EI-MS, the fragments at *m*/*z* 391 and 373 indicated the presence of a cardenolide aglycone.

Compound **2** (HR-ESI-MS: 543.2924 $[M+Na]^+$, calc. for C₂₉H₄₄O₈Na 543.2928) and compound **3** (557.3088 $[M+Na]^+$, calc. for C₃₀H₄₆O₈Na 557.3084) exhibited a mass difference of 131 and 145 in comparison to compound **1**. Because this difference was derived from the sugar moiety, the molecular formula of these sugars was deduced to be C₆H₁₁O₃ and C₇H₁₃O₃, identified a digitoxose and cymarose by acid hydrolysis and GC-MS analysis required derivatization MSTFA (*N*-methyl-*N*-trimethylsilyltrifluoroacetamide) with authentic sugars sample. The data agree with 17 α -H-periplogenin- β -*D*-digitoxose (**2**), and 17 α -H-periplogenin- β -*D*-cymarose (**3**) (Ueda *et al.*, 2003a).

(b) 17α -H-Periplogenin- β -glucosyl-(1-4)-2-O-acetyl-digitalose (4)

Fraction 13 of the ethyl acetate extract afforded the new compound **4** after column chromatography on sephadex LH 20 with MeOH.

The ESI-MS spectrum exhibited a $[M+Na]^+$ ion at m/z 777. Its molecular formula, $C_{38}H_{58}O_{15}$, (calcd. for $C_{38}H_{58}O_{15}Na$ 777.36679) was obtained through a combined application of ESI-MS, EI-MS, FT-ICR, ¹H NMR, and ¹³C NMR. The ¹H NMR spectrum (in CD₃OD) of the aglycone was similar to compound **1**. The signal of H-21a and b also showed a pair of double doublets at δ 5.09 ppm and δ 4.91 ppm. The H-22 was observed as a singlet at δ 5.89 ppm. The H-3 signal appeared as a broad singlet at δ 4.12 ppm, revealing its α -configuration. The ¹H NMR and ¹³C NMR data (in CD₃OD) demonstrated two molecules of sugar by two anomeric protons at δ 4.44 ppm for H 1' (*dd*, *J* = 8, 3.8 Hz) and δ 4.57 ppm for H 1'' (*dd*, *J* = 8, 3.5 Hz). They were connected to the anomeric carbons at δ 102.1 and 104.6 ppm in the HSQC spectrum respectively. Their chemical shifts and coupling constants suggested β -linkage of the sugars.

The structural assignment was confirmed by carrying out 2D NMR techniques such as HSQC and H-H COSY. The HMBC spectral analysis displayed correlation peaks between H-3 and C-1'of the digitalosyl (3-*O*-methyl- β -fucopyranosyl) unit, the anomeric proton of the glucosyl residue and C-4' of the digitalosyl unit, H-2' of digitalosyl and OAc. The connectivity between H-H and H-C in the NOESY and HMBC were also presented in Table 1. According to these spectral data, the structure of compound **4** was assigned as 17α -H-periplogenin-3-*O*- β -glucopyranosyl-(1-4)-2-*O*-acetyl-3-*O*-methyl- β -fucopyranoside. It is a new combination of the known aglycone and sugar moieties.

(c) 17β-H-Periplogenin (5), 17β-H-periplogenin-β-D-digitoxose (6), 17β-H-periplogenin-β-D-cymarose (7)

The subfractions 14 and 15 of the ethyl acetate extract provided, after silica gel and RP-18 column chromatography, the known compound **5** and the unknown compound **6**. Compound **7** was isolated from the *n*-butanol fraction. The compound **5** and **7** were identified as 17β -Hperiplogenin (**5**) and 17β -H-periplogenin- β -D-cymarose (**7**) by different MS and 2D NMR experiments and by comparison with the spectral data from literature (Furuya *et al.*, 1988).

Compound **5** had the composition $C_{23}H_{34}O_5$ on the basis of HR-MS. In the ¹H NMR (C_5D_5N) spectrum of **5**, the methyl proton signals H₃-18 and H₃-19 were shifted downfield to δ 1.227 and 1.186 ppm (each 3H, *s*) by comparison with that of compound **1**. The methine proton signal of H-17, coupling with the methylene protons of C-16, was also shifted downfield to δ 3.463 (1H, *t*, *J* 9.5 Hz). In the ROESY spectrum, a correlation peak between H-17 and H₃-18 was found. In the ¹³C NMR spectrum (Table 3), the carbon C-12 and C-17 signals were shifted upfield to δ 31.1 and 48.8 ppm. Thereby the configuration of H-17 was revealed to be β (Furuya *et al.*, 1988).

Compound **6** was isolated as a white powder. The molecular formula $C_{29}H_{44}O_8$ was deduced from positive ion ESI-FT-ICR-MS (m/z 543.29240 [M+Na]⁺, calcd. for $C_{29}H_{44}O_8$ Na 543.29283). The ¹H and ¹³C NMR data of the aglycone agree with the characteristic peaks of 17 β -H-periplogenin (Furuya *et al.*, 1988). The HMBC correlation between C-3 and the anomeric proton H-1' proved the presence of the sugar moiety at C-3. This is further supported by the NOE of H-3 with H-1'. According to the EI-MS data, the fragments at m/z 391 and 373 indicated a aglycone moiety and m/z 131 and 113 fragments of a 2,6-deoxy sugar moiety. The 2D NMR correlation peaks of the sugar moiety and the vicinal ¹H, ¹H coupling constants confirmed the presence of digitoxose. After hydrolyses with HCl, the hydrolysed sugar moiety could be also identified as digitoxose by GC analysis as its trimethylsilylether.

According to the spectral data, compound **6** was identified as a new combination of the known aglycone and known sugar 17β -H-periplogenin- β -D-digitoxoside.

(d) 17α -H-Digitoxigenin (8), 17α -H-digitoxigenin- β -D-digitoxoside (9)

Compounds 8 and 9 were isolated from fractions 10 and 11 of the ethyl acetate extract after silica gel chromatography. Their structures were confirmed by 2D NMR and comparison to reported data (Danieli *et al.*, 1966).

	0 F 1		ⁿ J _{CH} coupling.		
Atom	δ _H [ppm]	δ _C [ppm]	$\delta_{\rm H}$ [ppm], HMBC		
1	1.36, 1.70 (<i>m</i>)	26.5	1.02 (19)		
2	1.75, 1.64 (<i>m</i>)	26.9			
3	4.37 (<i>br s</i>)	78.7	4.84 (1')		
4	2.20, 1.65 (<i>m</i>)	36.1	1.70 (6A)		
5		75.1	1.65 (4B),		
			1.70 (6A)		
6	1.70, 1.50 (<i>m</i>)	35.6	1.02 (19)		
7	2.30, 1.35 (<i>m</i>)	24.9	1.70 (6A), 1.85 (8)		
8	1.85 (<i>m</i>)	41.6	2.30 (7A)		
9	1.60 (<i>m</i>)	40.1	1.85 (8), 1.02 (19)		
10		41.8	1.02 (19)		
11	1.35, 1.25 (<i>m</i>)	22.7	1.60 (9)		
12	1.36 (<i>m</i>)	40.9	1.00 (18),		
			2.81 (17)		
13		50.9	1.00 (18),		
			2.81 (17)		
14		86.3	1.00 (18),		
			2.81 (17),		
			2.10, 1.85 (15)		
15	2.10, 1.85 (<i>m</i>)	33.3			
16	2.10, 2.00 (<i>m</i>)	28.0	2.81 (17)		
17	2.818 (<i>m</i>)	51.9	2.00 (16B), 1.00(18)		
18	1.001 (s)	16.3	1.36 (12)		
19	1.029(s)	17.3			
20		178.3	5.10 (21B), 6.16 (22), 2.81 (17)		
21	5.10, 5.34 (<i>dd</i> , 8.4/1.7)	75.3	2.81 (17)		
22	6.161 (<i>br s</i>)	117.9	2.81 (17)		
23		177.2	6.16 (22)		
1′	4.841 (<i>d</i> , 8.0)	102.1	3.73 (5'), 5.82 (2')		
2'	5.828 (dd, 10.2/8.0)	72.7	3.60 (3'), 4.44 (4')		
3'	3.608 (dd, 10.1/3.0)	83.5	5.82 (2'), 4.44 (4'),		
			3.45 (O <u>Me</u>)		
4'	4.448 (br d, 3.0)	75.2	3.73 (5')		
5'	3.738 (<i>m</i>)	71.8	1.55 (6')		
6'	1.557(d, 6.4)	17.3	3.73 (5')		
3'-OMe	3.457(s)	58.5	3.60 (3')		
2'-0Ac	2.225(s)	21.1			
2'-0C0Me	(*)	172.2	5 82 (2')		
2 0 <u>00</u> me			2.22 (COMe)		
1′′	5.149(d, 7.7)	104.6	4 44 (4') 3 99 (2'')		
1 2//	3 00	75.0	(T, T, (T, J), (2, J))		
2"	J.JJ A DAQ (JJ 0 0/0 0)	73.7	$3.14(1^{\circ})$		
5	4.240 (uu, 0.0/0.0)	//.7 71.9	$4.19(4^{\circ})$		
4''	4.190(aa, 9.4/8.8)	/1.8	3.90 (3 ¹⁷)		
5''	3.90	/8.2	4.30 (0 [°] B),		
		62 0	4.19 (4'')		
6''	4.36, 4.60 (<i>br d</i> , 11.5)	63.0	3.96 (5")		

 Table 1 NMR Data of Compound 4 (500 MHz, CD₃OD)
 Image: CD_3OD

H-	δ _H [ppm]							
Atom	1	2	3	5	6	7	8	9
1		1.44,	1.42,	1.50,	1.48,	1.48,		1.56,
		2.08 (<i>m</i>)	2.04 (<i>m</i>)	2.28 (<i>m</i>)	2.12 (<i>m</i>)	2.08 (<i>m</i>)		1.76 (<i>m</i>)
2		1.72,	1.72,	1.84	1.76,	1.78,		1.22,
		2.08 (<i>m</i>)	2.04 (<i>m</i>)	<i>(m)</i>	2.12 (<i>m</i>)	2.08 (m)		1.82 (<i>m</i>)
3	4.46	4.397	4.373	4.483	4.426	4.424	4.42	4.335
	(br s)	(br s)	(br s)	(br s)	(br s)	(br s)	(br s)	(br s)
4		1.72,	1.74,	1.82,	1.76,	1.76,		1.60,
		2.18 (<i>m</i>)	2.22 (<i>m</i>)	2.34 (<i>m</i>)	2.24 (<i>m</i>)	2.24 (<i>m</i>)		1.87 (<i>m</i>)
5								1.86 (<i>m</i>)
6		1.52,	1.52,	1.64,	1.56,	1.56,		1.82 (<i>m</i>)
		1.90 (<i>m</i>)	2.22 (<i>m</i>)	1.98 (<i>m</i>)	1.94 (<i>m</i>)	1.96 (<i>m</i>)		
7		1.30,	1.30,	1.34,	1.32,	1.34,		2.12 (<i>m</i>)
		2.28 (<i>m</i>)	2.28 (<i>m</i>)	2.34 (<i>m</i>)	2.34 (<i>m</i>)	2.31 (<i>m</i>)		
8		1.84 (<i>m</i>)	1.84 (<i>m</i>)	1.96 (<i>m</i>)	1.94 (<i>m</i>)	1.94 (<i>m</i>)		1.78 (<i>m</i>)
9		1.64(<i>m</i>)	1.64 (<i>m</i>)	1.66 (<i>m</i>)	1.62 (<i>m</i>)	1.62 (<i>m</i>)		1.76 (<i>m</i>)
11		1.24,	1.26,	1.24,	1.42 (<i>m</i>)	1.24,		1.38 (<i>m</i>)
		1.38 (<i>m</i>)	1.40 (<i>m</i>)	1.50 (<i>m</i>)		1.48 (<i>m</i>)		
12		1.40 (<i>m</i>)	1.40 (<i>m</i>)	1.12,	1.12,	1.12,		1.40 (<i>m</i>)
				1.18 (<i>m</i>)	1.18 (<i>m</i>)	1.18 (<i>m</i>)		
15		1.86,	1.86,	1.88,	1.86,	1.86,		1.90,
		2.08 (<i>m</i>)	2.08 (<i>m</i>)	2.18 (<i>m</i>)	2.12 (<i>m</i>)	2.10 (<i>m</i>)		2.12 (<i>m</i>)
16		1.96,	1.96,	1.84,	1.78,	1.78,		1.98,
		2.10 (<i>m</i>)	2.10 (<i>m</i>)	2.13 (<i>m</i>)	2.06 (<i>m</i>)	2.08 (m)		2.12 (<i>m</i>)
17	2.84	2.817	2.818	3.463	3.438	3.447	2.84	2.805
	(<i>dd</i> , 9/3)	<i>(m)</i>	(<i>d</i> , 8.0)	(<i>t</i> , 9.5)	(br dd,	(br dd,	<i>(m)</i>	<i>(m)</i>
					9.6/9.6)	9.6/9.6)		
18	0.88(s)	1.036 (s)	1.038 (s)	1.227 (s)	1.198 (s)	1.201 (s)	1.05(s)	1.021 (s)
19	0.94 (s)	1.087 (s)	1.093 (s)	1.186 (s)	1.127 (s)	1.133 (s)	0.99 (s)	0.899 (s)
21	5.08, 5.36	5.06,	5.06,	4.85,	4.83,	4.83,	5.06,	5.06,
	(dd,	5.34 (<i>dd</i> ,	5.34 (<i>dd</i> ,	4.99 (<i>dd</i> ,	4.99 (<i>dd</i> ,	4.99 (<i>dd</i> ,	5.36 (<i>dd</i> ,	5.34 (<i>dd</i> ,
	18.1/1.4)	18.1/1.4)	18.1/1.4)	17.5/1.4)	17.6/1.8)	17.6/1.8)	18.1/1.4)	18.1/1.4)
22	6.17	6.158	6.159	6.162	6.133	6.131	6.15	6.156
	(br s)	(br s)	(br s)	(br s)	(br s)	(br s)	(br s)	(br s)
1'		5.465	5.177		5.489	5.186		5.494
		(dd,	(<i>dd</i> ,		(<i>dd</i> ,	(<i>dd</i> ,		(<i>dd</i> , 9.7/1.7)
		9.7/1.4)	9.7/1.8)		9.6/1.9)	9.6/1.9)		
2'		1.96 (<i>m</i>),	1.74,		1.99	1.92-2.00		2.472
		2.391	2.30 (<i>m</i>)		(<i>ddd</i> , 3.2	2.26-2.34		
		(<i>br d</i> , 13.2)			/9.6/2.6)	(<i>m</i>)		
					2.41 (13.6			
					/3.6/1.9)			
3'		4.426	3.554		4.439	3.734		4.498
		(d, 2.7)	(d, 2.9)		(d, 2.6)	(d, 2.9)		(d, 2.9)
4'		3.623	3.536		3.633	3.562		3.669
		(dd, .4/9.3)	(dd, .4/9.3)		<i>(m)</i>	<i>(m)</i>		(<i>dd</i> , 2.4/9.3)
5'		4.305	4.233		4.319 (<i>dq</i> ,	4.135 (<i>dq</i> ,		4.368
		<i>(m)</i>	<i>(m)</i>		9.4/6.2)	9.4/6.2)		<i>(m)</i>
6′		1.597	1.540		1.602	1.544		1.634
		(<i>d</i> , 6.1)	(<i>d</i> , 6.1)		(d, 6.2)	(d, 6.2)		(d, 6.3)
3'-			3.417 (s)			3.417 (s)		
OMe								

Table 2¹H NMR Spectral Data of Cardenolides 1-3, 5-9 (300, 500 MHz, C₅D₅N)

C-	δ _C [ppm]							
Atom	1	2	3	5	6	7	8	9
1	25.95	26.3	26.2	25.7	26.2	26.0	27.5	30.8
2	28.7	26.6	26.6	28.6	26.6	26.4	28.9	27.1
3	67.9	75.9	75.9	67.8	75.9	75.9	66.1	73.1
4	36.1	35.6	35.6	37.9	35.5	35.4	34.5	30.4
5	74.5	73.8	73.8	74.5	73.9	73.8	36.9	37.0
6	37.9	35.6	35.6	35.9	35.5	35.4	27.5	27.1
7	24.6	24.5	24.5	24.0	24.1	24.0	22.3	21.9
8	41.5	41.1	41.1	40.8	40.9	40.7	42.1	41.8
9	40.1	39.4	39.4	39.3	39.5	39.4	36.0	35.8
10	41.1	41.3	41.3	41.3	41.3	41.1	35.9	35.5
11	22.3	22.2	22.2	21.2	21.3	21.1	21.8	21.5
12	39.3	40.1	40.0	31.1	31.1	31.0	33.4	39.8
13	50.1	50.1	50.1	49.3	49.4	49.2	50.3	50.1
14	84.7	84.7	84.7	85.3	85.3	85.2	84.8	84.6
15	33.3	33.3	33.3	31.6	31.7	31.6	30.6	33.1
16	27.4	27.4	27.4	24.9	25.0	24.9	27.5	27.3
17	51.4	51.4	51.4	48.8	48.9	48.8	51.6	51.4
18	16.4	16.4	16.4	18.6	18.7	18.5	16.4	16.2
19	17.6	17.4	17.4	17.4	17.5	17.3	24.3	23.9
20	175.9	175.9	175.8	172.9	172.8	172.9	174.5	174.6
21	73.8	73.8	73.8	74.2	74.2	73.8	73.8	73.7
22	117.7	117.7	117.7	116.7	116.6	116.6	117.7	117.6
23	174.5	174.5	174.4	174.3	174.2	174.3	175.9	176.1
1'		97.6	97.4		97.5	97.4		96.7
2'		39.9	35.9		39.8	35.8		40.1
3'		68.6	78.8		68.6	78.7		68.7
4′		74.1	74.1		74.1	74.0		74.2
5'		70.7	71.2		70.6	71.1		70.3
6′		19.2	19.2		19.2	19.0		19.1
3'-			58.1			58.0		
OMe								

Table 3 ¹³C NMR Spectral Data of Cardenolides 1-3, 5-9 (300, 500 MHz, C₅D₅N)

Antiproliferative Activity of Cardenolides

Six cardenolides isolated from *Streptocaulon tomentosum* were tested for their antiproliferative activity *in vitro* against MCF-7 (human breast cancer cell line) and L 929 (mouse fibroblast cell line) by acid phosphatase method (Yang *et al.*, 1996). The antiproliferative activity of compounds **1**, **2**, **3**, **4**, **6** and **8** are summarized in Table 4. Cardenolides **1**, **2**, **3**, **4**, **6** and **8** are summarized in Table 4. Cardenolides **1**, **2**, **3**, **4**, **6** and **8** are summarized in Table 4. Cardenolides **1**, **2**, **3**, **4**, **6** and **8** show significant antiproliferative activity against MCF 7 cells (IC₅₀ < 1 μ M - 15,3 μ M after 2 days; IC₅₀ < 1 μ M - 4,31 μ M after 5 days incubation). However, cardenolides **2** and **3** possess considerable activity against L 929 (IC₅₀ 24.2 and 32.1 μ M after 5 days), while other cardenolides show no activity (IC₅₀ > 100 μ M). The antiproliferative activities of monoglycosidic cardenolides **2**, **3** attached to digitoxose are stronger, while those of **4** attached to a disaccharide is weaker than the activity of the aglycone **1**. In addition, the antiproliferative activities of **2** and **3**

are also stronger than that of **5**. Therefore, the configuration of the γ -lactone ring is also significant. The 17 α -configuration of the lactone ring correlates with a weaker effect than the 17 β -configuration. Similarly, the induction of apoptosis by compounds **2** and **3** in tumor and U 937 cell lines is stronger in comparison to the other compounds.

Cellular Viability and Cell Cycle Analysis of Cardenolides

Four cardenolides (2, 3, 6, and 8) were examined for cellular viability in the tumor cell line and U 937 (human leukemic cell line) at concentrations 100 μ M, 10 μ M, and 1 μ M. All these four cardenolides show toxicity induction of apoptosis at high concentration (> 10 μ M) (Table 5) in both cell lines. Compound 2 is the most detrimental at higher concentration in both of cell lines whereas compounds 6 and 8 show less activity. The most interesting observation is the higher activity of compound 2 against tumor cells vs U 937-cells at low concentration (1 μ M). The same cardenolides (2, 3, 6, and 8) were also analysed for the percentage of cells in GO, S, G2, G1 phases of the cell life cycle using flow cytometry. 2 cell lines were used, these are human U 937 myeloid leukemia cell line and tur cell line. Compounds 2 and 3 cause a block at the G₂/M-phase at 100 μ M and 10 μ M in both of cell lines whereas compounds 6 and 8 block at the G₂/M-phase at 100 μ M.

No		IC ₅₀ ((2 d incuba	(µM) ays ation)	IC ₅₀ (µM) (5 days incubation)	
		MCF-7	L 929	MCF-7	L 929
1	17α-H-periplogenin	5.29	> 100	2.57	> 100
2	17α -H-periplogenin-	< 1	51.5	< 1	24.2
	$3-O-\beta-D$ -digitoxoside				
3	17α-H-periplogenin-	< 1	64.0	< 1	32.1
	$3-O-\beta-D$ -cymaroside				
4	17α-H-periplogenin- β -	15.3	> 100	4.31	> 100
	glucopyranosyl- $(1\rightarrow 4)$ -2-				
	O -acetyl- β -				
	digitalopyranoside				
6	17β-H-periplogenin-3-O-	7.19	> 100	3.73	> 100
	β -D-digitoxoside				
8	17α -H-digitoxigenin	4.16	> 100	< 1	> 100
control	camptothecin	0,0804	0,179	0,0122	0,0285
control	doxorubicin	0,207	0,359	0,0049	0,0168

Table 4 Antiproliferative Activities of Constituents Isolated from S. tomentosum in MCF-7(Human Breast Cancer Cell Line) and L 929 (Mouse Fibroblast Cell Line)

	Cell Viability (%)						
compound	U 937			Tumor			
	100 µM	10 µM	1 µM	100 µM	10 µM	1 μΜ	
2	14,60	26,10	82,80	21,50	11,10	69,50	
3	26,90	28,90	68,10	42,30	11,50	27,60	
6	28,60	93,90	97,10	28,00	70,20	91,20	
8	26,70	77,50	97,30	28,90	32,10	89,80	
control	98,20	98,40	98,70	94,30	94,30	96,10	
(1% DMSO)							

Table 5 Cell Viability of Constituents Isolated from S. tomentosum in U 937 (Human
Leukemic Cell Line) and Tumor Cell in %.

Conclusion

Some cardenolides isolated from the roots of *Streptocaulon tomentosum* Wight show strong antiproliferative activity. Among six cardenolides, 17α -H-periplogenin-3-*O*- β -*D*-digitoxoside, and 17α -H-periplogenin-3-*O*- β -*D*-cymaroside exhibit significant antiproliferative activity (IC₅₀ values, < 1µM) against MCF-7. Four cardenolides were examined for their cellular viability in the tumor cell and U 937 (human leukemic cell line) at concentrations 100 µM, 10 µM, and 1 µM. All these four cardenolides show the induction of apoptosis at 100 µM and 10 µM in both cell lines. So the roots of *Streptocaulon tomentosum* Wight may be useful for the treatment of anticancer.

Acknowledgements

The authors acknowledge Dr Pho Kaung, Rector, University of Yangon for his kind permission to carry out this research and also thank to Dr Ni Ni Than (Professor

and Head), Department of Chemistry, University of Yangon.

References

- Danieli, N., Mazur, Y., and Sondheimer, F. (1966). "The Synthesis of Digitoxigenin". *Tetrahedron*, vol. 22, pp.3189-3193.
- Furuya, T., Kawaguchi, K., and Hirotani, M. (1988). "Studies on Plant-tissue Cultures. 55. Biotransformation of Digitoxigenin by Cell-suspension Cultures of *Strophanthus gratus*". *Phytochemistry*, vol.27, pp.2129-2133.
- Kawaguchi, K., Hirotani, M., and Furuya, T. (1988). "Biotransformation of Digitoxigenin by Cell Suspension Cultures of *Strophanthus amboensis*". *Phytochemistry*, vol.27, pp.3475-3479.
- López-Lázaro, M., Pastor, N., Azrak, S.S., Ayuso, M.J., Austin, C.A., and Cortés, F. (2005). "Digitoxin Inhibits the Growth of Cancer Cell Lines at Concentrations Commonly Found in Cardiac Patients". *Journal of Natural Products*, vol. 68, pp. 1642–1645.
- Ueda, J.Y., Tezuka, Y., Banskota, A.H., Tran, Q.L., Tran, Q.K., Saiki, I., and Kadota, S. (2003a). "Constituents of the Vietnamese Medicinal Plant *Streptocaulon juventas* and their Antiproliferative Activity against the Human HT-1080 Fibrosarcoma Cell". J. Nat. Pro, vol. 66, pp.1427-1433.
- Ueda, J.Y., Tezuka, Y., Banskota, A.H., Tran, Q.L., Tran, Q.K., Saiki, I., and Kadota, S. (2003b). "Antiproliferative Activity of Cardenolides Isolated from *Streptocaulon juventas*". *Biol. Pharm. Bull*, vol.26, pp.1431-1435.
- Yang, T.T., Sinai, P., and Kain, S.R. (1996). "An Acid Phosphatase Assay for Quantifying the Growth of Adherent and Nonadherent cells". *Anal Biochem*, vol. 241(1), pp. 103-8.